RIZZOLI, C., SANGERMANO, V., CALESTANI, G. & ANDREETTI, G. D. (1987). CRYSRULER. An Integrated System of Computer Programs for Crystal Structure Analysis on Personal Computers. J. Appl. Crvst. 20, 436-439.

SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England. VOLIOTIS, S., ARRIETA, J. M. & GERMAIN, G. (1984). Acta Cryst. C40. 1946-1948.

Acta Cryst. (1989). C45, 1660-1661

Stereochemical Studies of Oligomers. XXVI.* Bis[4-(4-aminophenoxy)phenyl]dimethylmethane

BY GABRIELE BOCELLI AND ANDREA CANTONI

Centro di Studio per la Strutturistica Diffrattometrica del CNR, Viale delle Scienze, 43100 Parma, Italy

(Received 10 May 1989; accepted 24 May 1989)

0i-Ci0

O2-C19

O2-C22

NI-C13

Abstract. $C_{27}H_{26}N_2O_2$, $M_r = 410.5$, monoclinic, Pc, a $= 15.138(2), b = 7.269(3), c = 10.386(2) \text{ Å}, \beta =$ 99.60 (4)°, $V = 1126.9 \text{ Å}^3$, Z = 2, $D_x = 1.21 \text{ g cm}^{-3}$, λ (Cu Ka) = 1.5418 Å, μ = 5.69 cm⁻¹, F(000) = 436, room temperature, final R = 0.075 for 1349 observed reflections. As expected the four rings C4 - C9 (A), C10...C15 (B), C16...C21 (C) and C22...C27 (D) are planar and their reciprocal dihedral angles are A-B= 103.3(3), A-C = 91.6(2), A-D = 7.6(2), B-C =11.8 (3), B-D = 110.4 (3) and C-D = 98.8 (2)°.

Experimental. Colourless prismatic crystal 0.4×0.5 $\times 0.8$ mm, Siemens AED single-crystal diffractom-

* Part XXV: Bocelli & Cantoni (1989).

Table 1. Atomic fractional coordinates $(\times 10^4)$ and

			(N2-C25	1.413 (12)	C10-C1/	1.379 (12)
		U_{m} (× 10 ⁴ Å ²	•)		C1C2	1.510 (16)	C16C21	1.409 (11)
			,		C1C3	1.548 (15)	C17-C18	1.381 (13)
	x	у	Z	U_{eq}^*	C1C4	1.532 (9)	C18-C19	1.374 (13)
01	8719 (4)	- 76 (9)	1648 (6)	727 (22)	CIC16	1.537 (8)	C19-C20	1.377 (12)
O2	2955 (4)	4434 (9)	210 (6)	782 (23)	C4C5	1.372 (13)	C20-C21	1.392 (11)
NI	10257 (7)	- 7137 (17)	2296 (14)	1105 (46)	C4C9	1.387 (13)	C22-C23	1.379 (14)
N2	1450 (6)	11469 (12)	228 (13)	953 (43)	C5C6	1.399 (14)	C22-C27	1.349 (12)
C1	5876 (1)	2469 (13)	4217 (1)	625 (29)	C6C7	1.358 (13)	C23-C24	1.379 (13)
C2	6254 (9)	4052 (22)	5078 (12)	1001 (56)	C7C8	1.402 (13)	C24C25	1.379 (14)
C3	5504 (8)	1013 (19)	5073 (12)	859 (45)	C8C9	1.373 (14)	C25-C26	1.383 (14)
C4	6622 (5)	1659 (12)	3559 (8)	578 (28)	C10C11	1.350 (13)	C26C27	1.395 (15)
C5	6952 (5)	-99 (13)	3717 (10)	591 (31)				
C6	7650 (6)	- 771 (14)	3120 (9)	686 (35)	C7O1C10	116.9 (6)	C12-C13-C14	121.6 (9)
C 7	8014 (5)	351 (12)	2303 (8)	580 (27)	C19O2C22	116-1 (6)	NI-CI3-CI4	117.6 (9)
C8	7687 (6)	2150 (13)	2096 (10)	692 (34)	C4C1C16	109.0 (4)	C13-C14-C15	120-2 (10)
C9	7013 (6)	2764 (13)	2722 (9)	654 (33)	C3C1C16	107.9 (5)	C10-C15-C14	118-1 (9)
C10	9088 (6)	- 1855 (13)	1840 (9)	663 (33)	C3C1C4	111-1 (6)	C1C16C21	122.2 (6)
C11	9669 (7)	- 2232 (15)	2942 (10)	774 (40)	C2C1C16	111.5 (6)	C1C16C17	119.7 (6)
C12	10086 (7)	- 3961 (16)	3103 (13)	819 (43)	C2C1C4	108.8 (6)	CI7-C16-C21	118-1 (7)
C13	9863 (6)	- 5266 (13)	2146 (11)	693 (37)	C2-C1-C3	108-6 (6)	C16C17C18	122-2 (8)
C14	9288 (6)	- 4905 (15)	1055 (12)	720 (40)	C1-C4-C9	118.7 (6)	C17-C18-C19	120-1 (9)
C15	8886 (7)	-3147 (16)	860 (11)	822 (43)	C1C4C5	125.8 (6)	O2-C19-C18	115.6 (7)
C16	5102 (5)	3095 (11)	3157 (8)	619 (27)	C5C4C9	115-4 (7)	C18-C19-C20	118.6 (8)
C17	4700 (6)	1848 (13)	2242 (10)	686 (33)	C4C5C6	124-0 (8)	O2-C19-C20	125.7 (7)
C18	3990 (6)	2324 (14)	1284 (12)	777 (38)	C5C6C7	118.8 (8)	C19-C20-C21	122-3 (7)
C19	3673 (5)	4099 (11)	1202 (8)	602 (27)	O1C7C6	126.5 (7)	C16-C21-C20	118·7 (7)
C20	4060 (6)	5361 (12)	2114 (9)	718 (32)	C6C7C8	119-1 (8)	O2-C22-C27	120-0 (7)
C21	4779 (4)	4916 (10)	3083 (8)	510 (23)	O1-C7-C8	114-4 (7)	O2—C22—C23	117-5 (7)
C22	2576 (5)	6205 (11)	187 (8)	635 (31)	C7C8C9	120-1 (8)	C23-C22-C27	122-5 (7)
C23	1977 (6)	6545 (12)	1024 (10)	460 (33)	C4C9C8	122.5 (8)	C22-C23-C24	116-6 (8)
C24	1598 (7)	8274 (12)	964 (11)	773 (36)	O1C10C15	119-1 (8)	C23-C24-C25	124-4 (8)
C25	1824 (5)	9691 (12)	198 (9)	687 (34)	01-C10-C11	119-5 (8)	N2-C25-C24	122-1 (8)
C26	2380 (6)	9205 (17)	- 676 (9)	778 (38)	CI1-CI0-CI5	121.3 (9)	C24C25C26	115-1 (8)
C27	2779 (5)	7474 (12)	- 666 (9)	658 (29)	C10-C11-C12	119-9 (9)	N2-C25-C26	122.6 (8)
					CI1-CI2-CI3	118-8 (10)	C25C26C27	122-4 (8)
* Hamilton (1959).					NI-CI3-CI2	120.8 (10)	C22-C27-C26	118-4 (8)

* Hamilton (1959).

0108-2701/89/101660-02\$03.00

© 1989 International Union of Crystallography

Table 2. Bond distances (Å) and angles (°)

C10-C15

CI1-CI2

C12-C13

CI3-CI4

C14-C15

1.381 (15)

1.403 (16)

1.375 (16)

1-335 (14)

1.415 (16)

1-393 (11)

1.410 (11)

1.389 (9)

1.408 (10)

1.482 (15)

eter equipped with an IBM PS2/30 personal com-

puter. nickel-filtered Cu $K\alpha$ radiation, intensities

measured with a modified version (Belletti, Cantoni

& Pasquinelli, 1988) of the Lehmann & Larsen

(1974) procedure, $3 \le \theta \le 70^\circ$ range, 26 reflections with $11.37 \le \theta \le 44.15^\circ$ employed for refinement of

lattice dimensions, index range $-18 \le h \le 18, 0 \le k$

 $\leq 8, 0 \leq l \leq 12$, significant crystal decomposition

revealed by a decrease in intensity of about 17% of

one check reflection measured every 50, intensities

corrected for this decay and for Lorentz and polarization effects, absorption ignored. 2437 reflections collected, 2338 unique, 1817 considered observed [$I \ge 3\sigma(I)$] and used in the refinement. Direct methods (*MULTAN*80, Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1980), block-matrix anisotropic least squares (*SHELX*76, Sheldrick, 1976), H atoms located in a ΔF map, those of N atoms not found, in the last cycles of refinement 12 reflections probably affected by extinction were excluded, $\sum w \Delta F^2$ minimized, unit weights, R = 0.075, (Δ/σ)_{max} = 0.09, the final difference electron density map shows peaks from 0.28 to -0.23 e Å⁻³, 167 and 216 parameters refined in two blocks. Atomic scattering factors were from *SHELX*76.

All the calculations were performed on an IBM PS2/80 personal computer with the *CRYSRULER* package (Rizzoli, Sangermano, Calestani & Andreetti, 1987). The final atomic parameters are in Table 1, Table 2 reports bond distances and angles and the molecule is illustrated in Fig. 1.*

Related literature. This paper is strictly related to other systematic analyses of monomers of epoxy resins (Bel'skii, Chernikova, Rotaru & Kruchinin, 1983; Grenier-Loustalot & Bocelli, 1983).

Fig. 1. A perspective view of the molecule with the atomic numbering scheme.

References

- BELLETTI, D., CANTONI, A. & PASQUINELLI, G. (1988). Gestione on Line di Diffrattometro a Cristallo Singolo Siemens AED con Sistema IBM PS2/30. Internal report 1/88. Centro di Studio per la Strutturistica Diffrattometrica del CNR, Parma, Italy.
- BEL'SKII, V. K., CHERNIKOVA, N. YU., ROTARU, V. K. & KRUCHI-NIN, M.M. (1983). *Kristallografiya*, 28, 685–689.
- BOCELLI, G. & CANTONI, A. (1989). Acta Cryst. C45, 1658-1660.
- GRENIER-LOUSTALOT, M. F. & BOCELLI, G. (1983). Eur. Polym. J. 19, 353-357.
- HAMILTON, W. C. (1959). Acta Cryst. 12, 609-610.
- LEHMANN, M. S. & LARSEN, F. K. (1974). Acta Cryst. A30, 580–589.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- RIZZOLI, C., SANGERMANO, V., CALESTANI, G. & ANDREETTI, G. D. (1987). CRYSRULER. An Integrated System of Computer Programs for Crystal Structure Analysis on Personal Computers. J. Appl. Cryst. 20, 436–439.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Acta Cryst. (1989). C45, 1661-1663

A New Crystalline Modification of Spironolactone

By V. Agafonov, B. Legendre and N. Rodier

Laboratoires de Chimie Minérale et de Cristallographie, Faculté de Pharmacie, 5 rue J.-B. Clément, 92996 Châtenay-Malabry CEDEX, France

(Received 20 April 1989; accepted 30 May 1989)

Abstract. 7 α -Acetylthio-3-oxo-17 α -pregn-4-ene-21,17 β -carbolactone, C₂₄H₃₂O₄S, M_r = 416·6, orthorhombic, P2₁2₁2₁, a = 10.584 (4), b = 11.005 (2), c = 18.996 (3) Å, V = 2213 (2) Å³, Z = 4, $D_x =$ 1.25 Mg m⁻³, λ (Mo K α) = 0.7107 Å, $\mu =$ 0.16 mm⁻¹, F(000) = 896, T = 294 K, final R = 0.047for 1237 reflections. The A-ring conformation is near that of a sofa, the B and C rings are chair shaped. The D ring is a distorted 13 β envelope ($\Delta = 32.5^{\circ}$, φ_m $= 45.9^{\circ}$) and the E ring is almost a plane. All the molecules are held together by van der Waals forces. The bioavailability of spironolactone (a useful diuretic, poorly soluble) depends on its allotropic form. Therefore, this crystalline modification, which is the more thermodynamically stable, has been studied.

Experimental. Single crystals prepared by cooling a supersaturated solution of spironolactone in acetone. Prismatic crystal: $0.22 \times 0.37 \times 0.40$ mm. Enraf-Nonius CAD-4 diffractometer; lattice parameters determined from 25 reflections having $5.04 \le \theta \le$

0108-2701/89/101661-03\$03.00

© 1989 International Union of Crystallography

^{*} Lists of structure factors, anisotropic thermal parameters and H coordinates with isotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51933 (11 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.